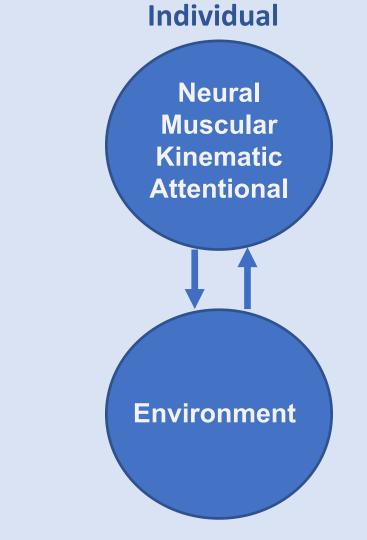
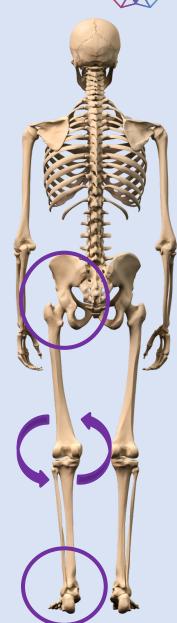

Coordinative Structures

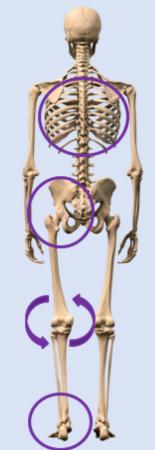

- "A self-organized, softly assembled set of components that can play different roles under different constraints" – Nikolai Bernstein
- Three global body regions
 - Midline Upper Limb Lower limb
- Upper limb & upper midline
 - Hand/wrist lower arm upper arm scapula rib cage head/neck
- Lower limb & lower midline
 - Foot/ankle > lower leg > upper leg > pelvis > rib cage/spine

Developing a Robust Coordinative Structure


- Local features
 - Neural
 - Muscular
 - Joint
 - Attentional
- How does the nervous system interact with the coordinative structure to manage load?
 - Conscious vs subconscious control dynamics

Case Insight

- Client with left side low back pain. Gradually developed over the past few months. Worse during activity and better with rest. Past hx includes left ankle sprains (3)
- What sticks out?
 - Worse after activity
 - Ankle sprains
- How might their current experience and injury history disrupt the behaviour and control gradient across the coordinative structure?
- What kind of strategies might we employ to restore a robust CS?
 - Restore dissociation capacity proximally
 - Restore isometric behaviour distally



Joint Features

- How does our system learn to control all the individual joint segments when moving the entire coordinative structure?
- Freezing ---> Freeing ---> Exploiting reactive properties

• Freezing

- A reduction in the degrees of freedom occurs in two general ways
- 1. A "locking" of joint movement potential (co-contraction)
- 2. Joint segments move in the SAME direction
- Freeing
 - Joint segments moving in *OPPOSITE* directions
 - Presents more of a control challenge, but represents robust load sharing

Proximal Dissociation

- Case insight:
 - Objective findings:
 - Limited left hip flexion femur displays abduction & ER (freezing)
 - Limited left hip internal rotation
- Proximal dissociation capacity
 - Posterior pelvic tilt & femoral IR (freeing)
 - Distribute load through biarticular tissues

Dissociation Loading Strategy

- Intention:
 - Facilitate proximal dissociation
- Facilitate global IR distally
 - Tibial IR & femoral IR
- Facilitate contractile variability through biarticular tissues
 - Overcoming & yielding strategies
- Potential regressions
 - Freezing strategy between femur & pelvis
 - Facilitate contractile variability of proximal tissues first

Muscular Features

- Directions vs isolated muscles
 - Multi-joint movement is task and direction specific
- Monoarticular vs biarticular
 - Express different behaviours to manage load
- Proximal vs distal

Dissociation

- Possess different architectural organization to manage load
- Contractile variability (overcoming vs yielding)

Overcoming

Yielding

- What strategies are we used to handle load?
- Produce or decelerate forces?

3 ankle sprains Coordinative

Distal Isometric Strategies

- Local ankle assessment:
 - Left knee 2 inches from wall @10cm
 - Right knee to all @ 10cm
- Restoring distal isometric qualities
 - Stay specific with clients objective findings
 - Directional isometric with dorsiflexion bias

- Progressions:
 - Increase lever
 - Internal/external perturbations at the knee
 - Isometric
 → Isotonic distal contractions

Picture credit: Frans Bosch – Strength training and coordination

